Low‐temperature synthesis of graphitic carbon‐coated silicon anode materials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries

In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...

متن کامل

Soft materials with graphitic nanostructures.

This review article focuses on our recent studies on novel soft materials consisting of carbon nanotubes. Single-walled carbon nanotubes, when suspended in imidazolium ion-based ionic liquids and ground in an agate mortar, form physical gels (bucky gels), where heavily entangled bundles of carbon nanotubes are exfoliated to give highly dispersed, much finer bundles. By using bucky gels, the fir...

متن کامل

Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries.

Silicon nanoparticles have been successfully inserted into graphene sheets via a novel method combining freeze-drying and thermal reduction. The as-obtained Si/graphene nanocomposite exhibits remarkably enhanced cycling performance and rate performance compared with bare Si nanoparticles for lithium-ion batteries.

متن کامل

Oxygen-driven unzipping of graphitic materials.

Optical microscope images of graphite oxide (GO) reveal the occurrence of fault lines resulting from the oxidative processes. The fault lines and cracks of GO are also responsible for their much smaller size compared with the starting graphite materials. We propose an unzipping mechanism to explain the formation of cracks on GO and cutting of carbon nanotubes in an oxidizing acid. GO unzipping ...

متن کامل

A beaded-string silicon anode.

Interfacial instability is a fundamental issue in heterostructures ranging from biomaterials to joint replacement and electronic packaging. This challenge is particularly intriguing for lithium ion battery anodes comprising silicon as the ion storage material, where ultrahigh capacity is accompanied by vast mechanical stress that threatens delamination of silicon from the current collectors at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Carbon Energy

سال: 2019

ISSN: 2637-9368,2637-9368

DOI: 10.1002/cey2.8